Are brain and heart tissue prone to the development of thiamine deficiency?

Astrid Klooster, James R. Larkin, Janneke Wiersema-Buist, Rijk O.B. Gans, Paul J. Thornalley, Gerjan Navis, Harry van Goor, Henri G.D. Leuvenink and Stephan J.L. Bakker (2013)

Alcohol. Advanced online publication. DOI: 10.1016/j.alcohol.2012.12.014.


Thiamine deficiency is a continuing problem leading to beriberi and Wernicke's encephalopathy. The symptoms of thiamine deficiency develop in the heart, brain and neuronal tissue. Yet, it is unclear how rapid thiamine deficiency develops and which organs are prone to development of thiamine deficiency. We investigated these issues in a thiamine deficient animal model. Twenty-four male Lewis rats were fed a thiamine deficient diet, which contained 0.04% of normal thiamine intake. Six control rats were fed 200 μg of thiamine per day. Every week a group of six rats on the thiamine-deficient diet was sacrificed and blood, urine and tissue were stored. Blood and tissue transketolase activity, thiamine and thiamine metabolites were measured and PCR of thiamine transporter-1 (ThTr-1) was performed. Transketolase activity was significantly reduced in red blood cells, liver, lung, kidney and spleen tissue after two weeks of thiamine deficient diet. In brain tissue, transketolase activity was not reduced after up to four weeks of thiamine deficient diet. The amount of thiamine pyrophosphate was also significantly conserved in brain and heart tissue (decrease of 31% and 28% respectively), compared to other tissues (decrease of ∼70%) after four weeks of thiamine deficient diet. There was no difference between tissues in ThTr-1 expression after four weeks of thiamine deficient diet. Despite the fact that the heart and the brain are predilection sites for complications from thiamine deficiency, these tissues are protected against thiamine deficiency. Other organs could be suffering from thiamine deficiency without resulting in clinical signs of classic thiamine deficiency in beriberi and Wernicke's encephalopathy.

Keywords: Thiamine - Transketolase activity - Wernicke's encephalopathy - Rat